Applications Based on Expert Systems For Early Diagnosing Anemia in Pregnant Women

##plugins.themes.academic_pro.article.main##

Meizar Abdul
Nur Hayati
Utami Utami

Abstract

Anemia in pregnant women is commonly called iron deficiency anemia with hemoglobin levels in red blood cells 10.0 grams/100 milliliters (10 grams/deciliter). This type of anemia is prone to be experienced by pregnant women because pregnant women must require very high oxygen levels. This type of anemia is not so dangerous but can be dangerous if there are congenital abnormalities of the body. Therefore, the authors feel it is important to identify this type of anemia early because there is a dangerous potential. The author makes an application based on an expert system that early diagnoses a pregnant woman with iron deficiency anemia or not. The method used is Bayes' theorem. The results obtained are efficiency and speed in early diagnosis of anemia in pregnant women used in hospitals. Coal Inalum. With a situation where the hospital only has one doctor serving many pregnant women patients. With the application of an expert system for early diagnosis of anemia in pregnant women, it can help users (doctors) in knowing the early symptoms of whether a pregnant woman has iron deficiency anemia or not.

##plugins.themes.academic_pro.article.details##

How to Cite
Abdul, M., Nur Hayati, & Utami, U. (2022). Applications Based on Expert Systems For Early Diagnosing Anemia in Pregnant Women. INFOKUM, 10(02), 823-829. Retrieved from http://infor.seaninstitute.org/index.php/infokum/article/view/417

References

[1] Agusli, R., Iqbal, M., & Saputra, F. (2020). Sistem Pakar Diagnosa Penyakit pada Ibu Hamil dengan Metode Certainty Faktor Berbasis Web. AJCSR (Academic Journal of Computer Science Research), 2(1), 37-45.
[2] Amalia, S., Afriyani, R., & Utami, S, P. (2017). Faktor Risiko Kejadian Anemia pada Ibu Hamil di Rumah Sakit BARI Palembang. Jurnal Kesehatan, 8(3), 389-395.
[3] Damanik, S. (2019). Faktor-Faktor yang Mempengaruhi Terjadinya Anemia pada Ibu Hamil Trisemester II. Jurnal Ilmiah Ilmu Kesehatan: Wawasan Kesehatan, 5(2), 232-239.
[4] Daifiria., & Akbar, M. B. (2017). Penerapan Metode Teorema Bayes untuk Mendiagnosa Penyakit Paru Obstruktif Kronik (PPOK). IT Journal, 5(2), 185-195.
[5] David. (2014). Penerapan Forward Chaining dalam Sistem Pakar Diagnosa Hama dan Penyakit Tanaman Jagung. Seminar Nasional Informatika 2014, 90-95.
[6] Ikorasaki, F. (2015). Sistem Pakar Mendiagnosa Penyakit pada Tulang dengan Menggunakan Metode Certainty Factor. Seminar Nasional Informatika 2015, 87-90.
[7] Mustafa, W. F., & Kusrini. (2019). Sistem Pakar Diagnosa Penyakit pada Ibu Hamil Menggunakan Teorema Bayes di Apotek Rumah Sederhana Jayapura. Infos Journal, 1(3), 33- 39.
[8] Paramitha, N., Junianto, E., & Susanti, S. (2019). Penerapan Teorema Bayes untuk Diagnosis Penyakit pada Ibu Hamil Berbasis Android. Jurnal Informatika, 1(1), 53-61.
[9] Puspita, K., & Tambunan, F. (2017). Penerapan Metode Certainty Factor dalam Mengidentifikasi Penyakit yang Diakibatkan Bakteri Chlamydia Trachomatis. IT Journal, 4(2), 170-180.
[10] Sianturi, C. J. M. (2014). Sistem Pakar Diagnosis Kejiwaan Menggunakan Metode Certainty Factor (Studi Kasus Rumah Sakit Jiwa Daerah Provinsi Sumatera Utara). Seminar Nasional Informatika 2014, 400-405.
[11] Siregar, E. T. (2015).Penerapan Teorema Bayes pada Sistem Pakar untuk Mengidentifikasi Penyakit Tumbahan Padi. Seminar Nasional Informatika 2015, 23-26.
[12] Wahyuni, L., & Darma, S. (2014). Sistem Pakar Mendiagnosa Penyakit Tanaman Kelapa Sawit dengan Metode Certainty Factor. Seminar Nasional Informatika 2014, 122-127.