CLASSIFICATION OF ELECTROCARDIOGRAM (ECG) WAVES OF HEART DISEASE USING THE XGBOOST METODE METHOD

##plugins.themes.academic_pro.article.main##

Serly Yunarti Butarbutar
Christian Deniro Napitupuluh
Nessa Sanjaya Ginting
Evta Indra
Delima Sitanggang

Abstract

CLASSIFICATION OF ELECTROCARDIOGRAM (ECG) WAVES OF
HEART DISEASE USING THE XGBOOST METODE METHOD

##plugins.themes.academic_pro.article.details##

How to Cite
Butarbutar, S. Y., Napitupuluh, C. D., Ginting, N. S., Indra, E., & Sitanggang, D. (2022). CLASSIFICATION OF ELECTROCARDIOGRAM (ECG) WAVES OF HEART DISEASE USING THE XGBOOST METODE METHOD. INFOKUM, 10(02), 891-904. Retrieved from http://infor.seaninstitute.org/index.php/infokum/article/view/428

References

[1] V. Octaviani, “Klasifikasi Detak Jantung Normal Dan Abnormal Berbasis Sinyal Ekg Menggunakan Metode Backpropagation,” p. 143, 2017.
[2] G. A. Roth et al., “Global Burden of Cardiovascular Diseases and Risk Factors, 1990-2019: Update From the GBD 2019 Study,” J. Am. Coll. Cardiol., vol. 76, no. 25, pp. 2982–3021, Dec. 2020, doi: 10.1016/J.JACC.2020.11.010.
[3] “Cardiovascular Disease Infographic - World Heart Federation,” 2019. https://world-heart-federation.org/resource/cardiovascular-disease-infographic/ (accessed Feb. 18, 2022).
[4] N. Estananto, “Klasifikasi Sinyal Elektrokardiogram Menggunakan Renyi Entropy,” J. Elektro dan Mesin Terap., vol. 4, no. 2, pp. 11–18, 2018, doi: 10.35143/elementer.v4i2.2139.


[5] M. Sofie and A. Rizal, “Klasifikasi Citra Rekaman Sinyal Elektrokardiogram Menggunakan Metode Analisis Tekstur, K-Nn Dan Multilayer Perceptron,” Simetris J. Tek. Mesin, Elektro dan Ilmu Komput., vol. 7, no. 1, p. 233, 2016, doi: 10.24176/simet.v7i1.509.
[6] A. K. Nastiti, E. Purwanti, and A. Supardi, “Klasifikasi Kelainan Jantung Dengan Metode Transformasi Fourier Dan Jaringan Saraf Tiruan,” Klasifikasi Kelainan Jantung Dengan Metod. Transform. Fourier Dan Jar. Saraf Tiruan, 2013.
[7] Niendy Alexandra Yosephine and Ratnadewi, “Penggunaan Artificial Neural Network pada Sinyal Elektrokardiogram untuk Mendeteksi Penyakit Jantung Aritmia Supraventrikular,” Inf. (Jurnal Inform. dan Sist. Informasi), vol. 13, no. 1, pp. 14–23, 2021, doi: 10.37424/informasi.v13i1.69.
[8] A. Rizal and V. Suryani, “Pengenalan Signal EKG Menggunakan Dekomposisi Paket Wavelet dan K-Means Clustering,” Proceeding Semin. Nas. Apl. Teknol. Inofrmasi 2008(SNATI 2008), vol. 2008, no. Snati, pp. 5–8, 2008.
[9] D. Evanko, “ALGORITMA KLASIFIKASI DATA MINING NAÏVE BAYES BERBASIS PARTICLE SWARM OPTIMIZATION UNTUK DETEKSI PENYAKIT JANTUNG,” Nat. Methods, vol. 7, no. 1, p. 34, 2010, doi: 10.1038/nmeth.f.284.
[10] T. Chen and C. Guestrin, “XGBoost : A Scalable Tree Boosting System,” pp. 785–794, 2016.
[11] I. Muslim and K. Karo, “Implementasi Metode XGBoost dan Feature Important untuk Klasifikasi pada Kebakaran Hutan dan Lahan,” J. Softw. Eng. Inf. Commun. Technol., vol. 1, no. 1, pp. 10–16, 2020, [Online]. Available: https://ejournal.upi.edu/index.php/SEICT/article/view/29347.
[12] K. Kelvin, J. Banjarnahor, E. Indra, and M. N. Nababan, “Analisis perbandingan sentimen Corona Virus Disease-2019 (Covid19) pada Twitter Menggunakan Metode Logistic Regression Dan Support Vector Machine (SVM),” J. Sist. Inf. dan Ilmu Komput. Prima(JUSIKOM PRIMA), vol. 5, no. 2, pp. 47–52, Feb. 2022, doi: 10.34012/JURNALSISTEMINFORMASIDANILMUKOMPUTER.V5I2.2365.
[13] “Apa itu Data Acquisition?” https://www.dataloggerindonesia.com/apa-itu-data-acquisition-152 (accessed Feb. 19, 2022).
[14] “Heart Attack Analysis & Prediction Dataset | Kaggle.” https://www.kaggle.com/datasets/rashikrahmanpritom/heart-attack-analysis-prediction-dataset (accessed May 13, 2022).
[15] “Machine Learning dengan Python. Untuk membuat model, tidak bisa… | by Muchamad Nur Kholis | Program Studi Statistika UII | Medium.” https://medium.com/statistics-uii/machine-learning-dengan-python-47e004eaa727 (accessed Apr. 13, 2022).
[16] Tamba, S.P., 2022. PREDIKSI PENYAKIT GAGAL JANTUNG DENGAN MENGGUNAKAN RANDOM FOREST. Jurnal Sistem Informasi dan Ilmu Komputer Prima (JUSIKOM PRIMA), 5(2), pp.176-181.

Most read articles by the same author(s)