DESIGN OF AUTOMATIC WATERING SYSTEM FOR HYDRAULIC PLANT MAINTENANCE USING MICROCONTROLLER BASED FUZZY SET METHOD

##plugins.themes.academic_pro.article.main##

Khairuna
Sriani
Adi Hartono
Abdul Halim Hasugian

Abstract

The application of technology to agriculture provides an advantage in terms of increasing production or yields. In terms of maintaining a plant, it takes a long process, for example fertilizing, irrigation, synthesis of sunlight and others. Up to now, this work is still carried out by human labor so that it severely limits the yield or quantity of harvest. The application of technology for plant cultivation is planned to build an automatic irrigation system for hydroponic plants. Hydroponic plants are a type of plant that only need water in the process of growth. Thus a good irrigation system greatly affects the success of cultivating this type of plant. The results of this study are: First, designing a hydroponic plant maintenance system that works automatically with sensors and microcontrollers. Second, designing a control circuit using the ATMega8 Microcontroller as the system controller. And third, implementing the Fuzzy Set algorithm in the program so that the system can work properly.

##plugins.themes.academic_pro.article.details##

How to Cite
Khairuna, Sriani, Hartono, A., & Hasugian, A. H. (2020). DESIGN OF AUTOMATIC WATERING SYSTEM FOR HYDRAULIC PLANT MAINTENANCE USING MICROCONTROLLER BASED FUZZY SET METHOD. INFOKUM, 9(1,Desember), 44-49. Retrieved from http://infor.seaninstitute.org/index.php/infokum/article/view/79

References

[1] S. Džeroski, “Data Mining,” in Encyclopedia of Ecology, Five-Volume Set, 2008.
[2] X. Wu, X. Zhu, G. Q. Wu, and W. Ding, “Data mining with big data,” IEEE Trans. Knowl. Data Eng., 2014.
[3] X. Wu et al., “Top 10 algorithms in data mining,” Knowl. Inf. Syst., 2008.
[4] R. Sowmya and K. R. Suneetha, “Data Mining with Big Data,” in Proceedings of 2017 11th International Conference on Intelligent Systems and Control, ISCO 2017, 2017.
[5] C. Borgelt and C. Borgelt, “Efficient Implementations of Apriori and Eclat,” PROC. 1ST IEEE ICDM Work. Freq. ITEM SET Min. IMPLEMENTATIONS (FIMI 2003, MELBOURNE, FL). CEUR Work. Proc. 90, 2003.
[6] A. Bhandari, A. Gupta, and D. Das, “Improvised apriori algorithm using frequent pattern tree for real time applications in data mining,” in Procedia Computer Science, 2015.
[7] D. S. Kusumo, M. A. Bijaksana, and D. Darmantoro, “DATA MINING DENGAN ALGORITMA APRIORI PADA RDBMS ORACLE,” TEKTRIKA - J. Penelit. dan Pengemb. Telekomun. Kendali, Komputer, Elektr. dan Elektron., 2016.
[8] A. Nursikuwagus and T. Hartono, “IMPLEMENTASI ALGORITMA APRIORI UNTUK ANALISIS PENJUALAN DENGAN BERBASIS WEB,” Simetris J. Tek. Mesin, Elektro dan Ilmu Komput., 2016.
[9] D. K. Pane, “Implementasi Data Mining Pada Penjualan Produk Elektronik Dengan Algoritma Apriori ( Studi Kasus : Kreditplus ),” Pelita Inform. Budi Darma, 2013.
[10] H. Toivonen, “Apriori Algorithm,” in Encyclopedia of Machine Learning and Data Mining, 2017.
[11] J. Nahar, T. Imam, K. S. Tickle, and Y. P. P. Chen, “Association rule mining to detect factors which contribute to heart disease in males and females,” Expert Syst. Appl., 2013.