v P EAN IN.‘H"I‘I'I'IJ'I'I-J
http://infor.seaninstitute.org/index.php/infokum/index
JURNAL INFOKUM, Volume 9, No. 2,Juni 2021 ISSN : 2302-9706

BIT CHECK IN ERROR DETECTION ON TEXT DATA
TRANSMISSION USING HAMMING CODE ALGORITHM

Pilipus Tarigan
Medan College of Computer Science (STIKOM Medan)

JIn. Jamin Ginting No. 285 P. Moon Medan
e-mail: pilipustarigans@gmail.com

Abstract

Article Info When data or information is transmitted via wireless or via cable channels,

Received 12 June 2021 errors may occur while the data is transmitted. One of the efforts made is to

Revised 28 June 2021 apply error control coding. Hamming code is an example of an existing error

Accepted 30 June 2021 control coding technique. Hamming code performance is distinguished by
the number of parity bits it has. Ontelecommunications allows everyone to
communicate with each other quickly over long distances though. Data that
is transmitted or sent in the form of text data can fail (error). Errors cause
changes in the contents of the data transferred to the recipient (Receiver) to
change or fail. One way to detect simple errors is to use Hamming Code
with single error correction. In the detection, this algorithm uses the EX-OR
(Exclusive—OR) operation in the error detection process.In testing the data
sent is not the same as the result received, the bit has experienced an error,
and the system will correct the position where the bit has an error.

Keywords: information system, web-based, thesis defense schedule and assessment

1. INTRODUCTION

Submission of data at the time of transmission or transmission of text data can fail (error). Errors
cause changes in the contents of the data transferred to the recipient (Receiver) to change or fail. In
computer science, there are various kinds of logic to detect and correct these errors. One way to detect
simple errors is to use Hamming Code with single error correction.

Hamming Codeis an error detection algorithm that is able to detect several errors, but is only
able to correct one error (single error correction). This error detection algorithm is very suitable to be
used in situations where there are several random errors. The Hamming Code algorithm inserts (n + 1)
check bits into 2n data bits. This algorithm uses the EX-OR (Exclusive—OR) operation in the error
detection process. The input and output data of the Hamming Code algorithm are binary numbers.

Based on the description above, the author intends to design an application that is able to
explain error detection techniques with the Hamming Code algorithm

2. METHODS
Step-The steps for making this system include:
1) Literature review
The literature study method is by reading some of the literature and references on error detection
algorithms.Gather expert opinions in supporting journals related to previous error detection.
2) Analyzing error detection techniques from the Hamming Code algorithm.
3) Designing the application interface using the Visual Basic 6.0 programming language.

8o INFOKUM is licensed under a Creative Commons Attribution-Non Commercial 4.0 International
License (CCBY-NC 4.0)
535

http://infor.seaninstitute.org/index.php/infokum/index
mailto:pilipustarigans@gmail.com

4) Implementing error detection techniques using the Hamming Code algorithm.
5) Testing the error detection application using the Visual Basic 6.0 programming language.

3. RESULTS AND DISCUSSION
1. System Modeling

In modeling this system the author uses Unified Modeling Language (UML) in designing and
designing Bit Check In Error Detection Application In Text Data Transmission With Single Error
Correction Using Hamming Code Algorithm. The UML that will be used are use case diagrams and
Activity diagrams.

The following is a picture of the use of the system which is described in the form of a Use Case
diagram.

Form Splash Screen

Form Langkah
Penyelesaian

Figure 1. Use Case diagram of the system

WLSESE 0

user

A

2 Check Bit Insertion Model Activity

System User

Fg INFOKUM is licensed under a Creative Commons Attribution-Non Commercial 4.0 International
License (CCBY-NC 4.0)
536

Select the Check Bit
Insertion Menu

Menu Screen
Display

—
A 4
)

h 4

Specify the File to be
Inserted Check Bit

Run the Insert
Process

~—
A
)

A4

Exit the Insert Menu

l
®

Insertion
Completed

—
A 4
)

Figure 2. Activity Check Bit Insertion Process Diagram

3. Activity Model Error Detection

System User

Fg INFOKUM is licensed under a Creative Commons Attribution-Non Commercial 4.0 International
License (CCBY-NC 4.0)
537

Vs

Show Menu Screen

Check if the check bit

{ Select Detect Menu]

A 4

matches the original bit |«

- J

Show Error
Message

A 4

Perform the
Recovery Process

|

A

[

A

Show Value

(Display Inserted Check }

L Bit

From File

j Exit Detect
| Menu

l
O

4.

Figure 3. Activity Diagram Error Detection

Activity Model Process View About the Program

System

User

Fg INFOKUM is licensed under a Creative Commons Attribution-Non Commercial 4.0 International
License (CCBY-NC 4.0)

538

[Show Menu 1 (Select Menu }

Screen J ;L About Program

/

[Show Info About w ‘[Exit Menu View About }

Program g Program

O,

Figure 4. Activity Diagram of the Process See About the Program

5, Error Detection with Hamming Code Algorithm

Suppose the length of the input and output data = 32 bits, the data to be transmitted is the
DEDI character.

Data Input DEDI = 0100 0100 0100 0101 0100 0100 0100 1001
While the output data received is 0100 0000 0100 0101 0100 0100 0100 1001

Fg INFOKUM is licensed under a Creative Commons Attribution-Non Commercial 4.0 International
License (CCBY-NC 4.0)
539

(0 Formi o W TR ——— ===

Perancangan Aplikasi Deteksi Bit Check in Ermr i
Pada Transmisi Data Text Dengan Single Error Corre
Menggunakan Algoritma Hamming Code

Bit Position Member Position

38 100110 M3Z2
37 100101 M31
36 100100 M30
35 100011 M29
34 100010 Mz2a
33 100001 M27
32 100000 C5

31 011111 M2s
30 011110 M25
29 011101 M2
28 011100 M23
27 011011 Mz22
25 011010 -

Proses Hamming Code

Sl

Figure 5. Main Input and Output Form
In Figure 5 above the user can choose the length of the data to be transmitted then input the
transmitted data (Input Data) and re-enter the received data (Data Output) as comparison data for
detecting the position where the bit has an error.
The steps for single error detection with Hamming Code are as follows:

1. Create a check bit table.

1 = 6 bit.
Bit Position Member Position Check Bit Data Bit o
38 100110 M32
37 100101 M31
36 100100 M30
35 100011 M28
34 100010 M28
33 100001 Mz27
32 100000 Ce
31 011111 M26
30 011110 M25
29 011101 M24
28 011100 M23
27 011011 M22
26 011010 M21
25 011001 M20
24 011000 M18
23 010111 Mig
22 010110 M17
21 010101 Mlé
20 010100 M15 -
Check bit merupakan bit dengan bit position 2°n, seperti : bit position 1 =CI1, 2=C2, 4=C3, dst
Eit selain check bit merupakan data bit, seperti : bit position 3 =M1, 5 =M2. dst

== Back | Next>> 1 Exit

Figure 6. Creating a check bit table for input and output data

After the input data and output data are inputted, the next step is to create a check bit table according
to the length of the data that has been obtained.

2. Find the formula of the check bit - 1.

(GILE INFOKUM is licensed under a Creative Commons Attribution-Non Commercial 4.0 International
License (CC BY-NC 4.0)

540

on bernilai 1, kecuali posisi check bit.
ut. Ha=sil operasi merupakan nilai check bit.

Bit Position Member Position Check Bit Data Bit -
38 100110 M32
27 100101 M31
36 100100 M30
S 100011 M29
34 100010 M28
=Y 100001 M27
32 100000 cé
31 011111 M286
30 011110 M25
29 011101 M24g
28 011100 M23
27 011011 M22
2a 011010 M21
25 011001 M20
24 011000 Mig9
23 010111 Mi8
22 010110 M17
21 010101 Mle
20 010100 M1S -
Cl=Ml& M& M4® M5& M7& MI® MIl& MI2S Mi4& M6 ® MISE® M20 S M2E M24 & M26
® M27S M229OS M31

<< Back | Next=> | Exit |

Figure 7. Finding the formula from check bit - 1 for input and output data

After the "Next" button is pressed In Figure 7 above, the search form for the 1st check bit formula will
appear and will continue until the nth bit corresponds to the number of check bits obtained in the
length of the data.

3. Counts the check bits of the input data.
o[1fofofofafofofof1]afafo[afofa]o]a]ofafo[sofo]o[a]Jo]Je[2]a]a]1
w1 |12 (13 [ma |25 |6 (107 [e [s [uro[urafuaz|wra[me afurs|in 6[ua7{wia]rs(uz o[z 1]z 2| vz 3[uz 4] mz 5|z 6[uz 7[wza] 2 5| uan[ua1]usz]
C1 =Mle Me Mie Mie MVie MO Mlle MI2e Ml4S MI6S Mise M2We M2S M24S M6 4
= M27S M9 S M31

=02 1208020802080 18 121802 1202120323120
=1
=MlE& MIi© M4 M6 MISE MIOSE MI1E MI3E MI4© MITS MIS S M21S M22S M5 S
M2B & M29 S M32
=gt lelasltelelalte lelte laleletelatalael
=0
=M2e M3Ie Md4e ME® MO MIOE Mlle MisSe Ml6e MI7TE MIf& M23e MMae M2 &
M302 M31S M32
=l 1002 1202 12020202 120202 1
=0
[+]] 1
c3 c2 C1
1 4] 0 Q 1 4]
Mz23 M28 M27 Cé M26 M25
B
| Next>> | Bxit |

Figure 8. Calculating check bits from input data
After the Check bit formula is obtained, the process of calculating the value of the input check bit is
carried out using XOR logic. The "Next" button is used to display the next output data check bit
calculation.
4. Count the check bits of the output data.

INFOKUM is licensed under a Creative Commons Attribution-Non Commercial 4.0 International
License (CC BY-NC 4.0)
541

o[1]ofo|ofafofofo[sfofofo[afo[afofa]ofo]o[a]ofo]o]a]Jo]o]r]o]o]1
vy | vz [ma [e [ms [ve (w7 [na [us [urofwia|mrz[ura{mre|urs{urelur 7| u1a[wrs]uzofmz1]uza|uza[me 4] 25| uz 6]z 7| 2a(uz s|uso]ua 1 ua:

C1 =Ml MS M4 MSE MIT2 MO MI1IS MI2E M43 MI6S MISS M0 S M2S M4 S M6 -
2 M27T2 M29E M3l

=02 120205030202 03 121812031208 13203 120

=1

C2 =MISMS M4S M6S MTS MIOS MIIS MI3S MI4S MI7TS MISS M1 S M2S MBS S
M26 S M28 S M29S M32

0802020808 180202 18081802 18081808 15 1

=1

C3 =M MIie M4e ME® MOS MIDS MIl2 MIS© MI6S MI72 MIES M23S M24 & M2 2
M26 & M30S M31S M32
=l@g0elelisieleteltalaltalataialtelataial

=0

1 1
cz c1
0 0 0 1 0
M28 M27 cé 126 M25
D
| Next>> | Exit

Figure 9. Calculating the check bit of the output data

At this stage, after the Check bit formula is obtained, the process of calculating the value of the output
check bit is carried out using XOR logic as a comparison whether the results of the calculation are the
same or not, otherwise the data bit has experienced an error.

5. Look for the position of the error (bad bit).

T .

B A i 001010 (biner) = 10 (desimal), 10 lebih kecil dari
[}] 1 38 dan bukan posi=2i check bit, berarti jumlah error
0 1 bumah. Bad kit berada pada posisi 10 dalam tabel.

Member Position Check Bit Data Bit o

iz 001100 M8
11 001011 M7
10 001010 M&

a 001001 M5

8 001000 Cc4

7 000111 M4

& 000110 M3

5 000101 M2

4 000100 C3

3 000011 M1

2 000010 cz2

1 000001 cl -

utput terdapat kesalahan.

o 4] 1 a o
Me M9 Mio Mi1 M1z

a adalah M6 = ~(M&) = ~(0) = 1

s | _

Figure 10. Finding the error position (bad bit) for Input and Output data

In Figure 10 above is the last stage for detecting bit errors and knowing where the bits have errors.
The "Back" button is used to show the steps before the bad bit search process, while the "Exit" button
is to exit the program when the button is pressed.

4. CONCLUSION
From the previous discussion, it can be concluded:

INFOKUM is licensed under a Creative Commons Attribution-Non Commercial 4.0 International
License (CC BY-NC 4.0)
542

Bit check-in error detection can be done if the text data sent or transmitted to the receiver has changed
so that the data sent is not the same as the data received by the receiver. In its application the
Hamming Code Algorithm in detecting the check-in error bit is only capable ofperform one-bit
damage detection or called single-bit error detection. On the other hand, Hamming code algorithm
cannot detect if there is more than one bit error. If there is such a case, only one bit error is detected.

Reference
1. Jogyanto HM, "Analysis & Design", ANDI Publisher, Yogjakarta, 2005
2. Ariyus, Doni & Andri, Rum KR, “Data Communication”, Andi Publisher, Yogyakarta, 2008

3. Albar, Ahmad Alfi, Poltak and Sani, Arman. Designing Error Detection System And Error
Correction System Using Hamming Code Method In Text Data Delivery.

4. Gupta, Brajesh K. and Rajeshwar Lal dua. 2012. 30 BIT Hamming Code For Error Detection and
Correction with even parity and odd parity Check Method by using VHDL.

5. Saragih, Arlando Saragi and Hanapi Gunawan, 2011, Simulation of Concealing Errors in Image

Using Multi Directional Interpolation (MDI) Method.

Purnomo, Galih, "The Hamming Method".

7. Maharani, Tamara, Pratiarso, Aries and Arifin, "Simulation of Sending and Receiving
Information Using BCH Code".

S

Fg INFOKUM is licensed under a Creative Commons Attribution-Non Commercial 4.0 International
License (CCBY-NC 4.0)
543

