CREDIT RISK PREDICTION USING NEURAL NETWORK BACKPROPAGATION ALGORITHM

  • Maradu Sihombing Teknik Informatika, AMIK Medan Business Polytechnic, Medan, Indonesia
  • Erwin D. Sitanggang Teknik Informatika, AMIK Medan Business Polytechnic, Medan, Indonesia
Keywords: Predictions, credit risk, Neural Networks, Backpropagation Algorithms

Abstract

Credit is a business activity that contains high risk and greatly affects the health and survival of banking businesses and financing institutions. Predicting credit risk is very beneficial for banks or financing institutions in taking decisions to establish credit. Decision makers of banks and financing institutions must have the precautionary principle to minimize credit risk when credit will be provided. The study designed credit risk prediction software with artificial neural network methods backpropagationalgorithms. Artificial neural network backpropagation with 1 hidden layer and the amount of data for training and testing as many as 20 pieces consisting of 5 models and using the logsig activation function is able to predict credit risk with a truth percentage of 70%-80%. Training and testing is used using matlab 6.1 software. Based on these results, the study recommends the development of artificial neural network algorithms as an effective method on credit risk prediction systems.

Downloads

Download data is not yet available.

References

[1] Anggriyani, 2015. Klasifikasi Kanker Serviks Menggunakan Jaringan Syaraf Tiruan Backpropagation and Graphical User Interface (GUI), EISSN 265-2738.
[2] Dwi Marisa Efendi, 2017. Penerapan Algoritma Jaringan Syaraf Tiruan untuk prediksi kelayakan kredit di koperasi Bina Bersama Lampung Utara, Prosiding ISSN 2598-0246, E-ISSN 2598-0238.
[3] Febrianto dan Mustafidah 2013, Penerapan Jaringan Syaraf Tiruan dengan Metode Pembelajaran Backpropagation untuk mengetahui tingkat kualifikasi calon siswa pada sistem informasi penerimaan siswa baru di MAN 2, Banjarnegara. ISSN : 2086-9398.
[4] Maharani Dessy Wulandari, Irawan Afrianto 2012, Perbandingan Metode Jaringan Syaraf Tiruan Learning Vector Quantization pada pengenalan wajah, edisi 1 Volume 1, 2012
[5] Novan Wijaya, 2018. Model Jaringan Syaraf Tiruan untuk evaluasi resiko kredit, Journal of computer science and information systems, 2/1 (2018)
[6] Yustria Handika Siregar, 2017. Prediksi prilaku pola jumlah mahasiswa menggunakan Jaringan Syaraf Tiruan dengan metode Backpropagation, Jurnal teknologi informasi vol 1 no 2 Desember 2017, e-ISSN 2615-2738
[7] Yusuf Wira Nugraga 2017, Penerapan Jaringan Syaraf Tiruan Backpropagation pada Prediksi Penerimaan Kredit Nasabah, Vol 4 No. 1, ISSN 2615-5788
[8] M. Rikzal Humam Al Kholili1 , Budi Darma Setiawan2 , Randy Cahya Wihandika3, Implementasi Metode Jaringan Saraf Tiruan Backpropagation Pada Prediksi Payload 4G di Telkomsel, Jember, Jurnal Pengembangan Teknologi Informasi dan Ilmu Komputer e-ISSN: 2548-964X Vol. 3, No. 4, April 2019
[9] Dwi Marisa Efendi, Penerapan Algoritma Jaringan Syaraf Tiruan Untuk Prediksi Kelayakan Kredit Di Koperasi Bina Bersama Lampung Utara, PROSIDING ISSN: 2598 – 0246 | E-ISSN: 2598-0238 SEMNAS IIB DARMAJAYA, 2017
[10] Nur Hadianto1; Hafifah Bella Novitasari2; Ami Rahmawati, Klasifikasi Peminjaman Nasabah Bank Menggunakan Metode Neural Network, Jurnal PILAR Nusa Mandiri Vol. 15, No. 2 September 2019
Published
2021-11-04
How to Cite
Maradu Sihombing, & Erwin D. Sitanggang. (2021). CREDIT RISK PREDICTION USING NEURAL NETWORK BACKPROPAGATION ALGORITHM. INFOKUM, 10(1), 1-10. Retrieved from https://infor.seaninstitute.org/index.php/infokum/article/view/2903