Utilization Of Big Data For Personalized Online Learning: An Empirical Study In Higher Education
Abstract
This study explores the use of Big Data in personalizing online learning in higher education, focusing on student access and engagement patterns in e-learning platforms. The main problem faced is the inefficiency in monitoring student engagement, which impacts academic outcomes. The solution offered is learning analytics analysis using clustering and classification techniques to personalize learning materials. Data is taken from student activities on e-learning platforms for one semester. Data processing is done using machine learning tools such as K-Means Clustering and Decision Tree. The results show that active engagement in e-learning platforms is associated with better academic performance, where students with higher access frequencies tend to have better grades. The visualization graph shows the trend of access intensity in the evenings and weekends, as well as the positive relationship between access duration and exam scores. With a Big Data-based system, institutions can improve the online learning experience and provide more personalized recommendations to support student academic success
Downloads
References
Afifuddin, A., & Hakim, L. (2023). Deteksi Penyakit Diabetes Mellitus Menggunakan Algoritma Decision Tree Model Arsitektur C4. 5. Jurnal Krisnadana, 3(1), 25–33.
Alfiah, F., Usanto, S., Setiadi, A., Supriadi, A., Suhanda, Y., & Nurlaela, L. (2023). Data Mining to Predict the Ability of Prospective Customer Credit Payments. 2023 11th International Conference on Cyber and IT Service Management (CITSM), 1–6.
Anin, K., Kelen, Y. P. K., & Nababan, D. (2023). Sistem Pendukung Keputusan Pemilihan Siswa Berprestasi Menggunakan Metode Profile Matching Berbasis Web (Studi Kasus: SMK Negeri 1 Kefamenanu). Jurnal Krisnadana, 2(3), 388–402.
Aristamy, I. G. A. A. M., Sudipa, I. G. I., Yanti, C. P., Pratistha, I., & Waas, V. D. (2021). An Application of a Decision Support System for Senior High School Scholarship with Modified MADM Method. 2021 6th International Conference on New Media Studies (CONMEDIA), 54–59. https://doi.org/https://doi.org/10.1109/CONMEDIA53104.2021.9617180
Dewi, N. L. P. T. K., Nilawati, N. K. U., & Anandita, I. B. G. (2024). Visual Analysis of Marketplace Sales Data for Strategic Decision Making Using Tableau. TECHNOVATE: Journal of Information Technology and Strategic Innovation Management, 1(3), 156–169. https://doi.org/https://doi.org/10.52432/technovate.1.3.2024.156-169
Herlina, H. (2024). Utilization of Big Data for SWOT Analysis in Improving Business Sustainability of MSMEs. TECHNOVATE: Journal of Information Technology and Strategic Innovation Management, 1(2), 89–95. https://doi.org/10.52432/technovate.1.2.2024.89-95
Ibrahim, M. B., Sari, F. P., Kharisma, L. P. I., Kertati, I., Artawan, P., Sudipa, I. G. I., Simanihuruk, P., Rusmayadi, G., Nursanty, E., & Lolang, E. (2023). METODE PENELITIAN BERBAGAI BIDANG KEILMUAN (Panduan & Referensi). PT. Sonpedia Publishing Indonesia.
Kurniati, I., Dewi, C. S., & Juniantika, R. (2021). Penerapan Data Mining dengan Algoritma Neural Network pada Sistem Informasi Prediksi Kasus Balita Gizi Buruk di Provinsi Nusa Tenggara Barat. JRIS: Jurnal Rekayasa Informasi Swadharma, 1(1), 20–27.
Lin, A. K. (2024). The AI Revolution in Financial Services: Emerging Methods for Fraud Detection and Prevention. Jurnal Galaksi, 1(1), 43–51. https://doi.org/10.70103/galaksi.v1i1.5
Puspitasari, T., Tubagus, M., Aziz, F., & Dewi, C. S. (2023). The Analysis of Utilizing Pinterest Application in Making Interactive Teaching-Learning Media for Early Childhood Students. Journal of Childhood Development, 3(2), 81–88.
Sahyunu, S., Moedjahedy, J., Adhicandra, I., Suhanda, Y., Usanto, S., & Rahim, R. (2023). Evaluating the Suitability of Online Courses using the ELECTRE Method. AL-ISHLAH: Jurnal Pendidikan, 15(3), 2946–2954.
Saputro, J., Saini, K., & Valentine, H. M. (2024). Data Visualization of Higher Education Participation Rates in Indonesia Provinces. Jurnal Galaksi, 1(2), 101–109. https://doi.org/https://doi.org/10.70103/galaksi.v1i2.20
Sopian, A., Usanto, S., & Sauri, R. S. (2023). The Leadership Of The Head Of The Study Program In Efforts To Improve Lecturer Performance. JHSS (JOURNAL OF HUMANITIES AND SOCIAL STUDIES), 7(3.), 1222–1229. https://doi.org/https://doi.org/10.33751/jhss.v7i3..9452
Sudipa, I. G. I., Sarasvananda, I. B. G., Prayitno, H., Putra, I. N. T. A., Darmawan, R., & WP, D. A. (2023). Teknik Visualisasi Data. PT. Sonpedia Publishing Indonesia.
Usanto, S., Sopian, A., Sucahyo, N., Syahrial, R., & Hiswara, I. (2024). INTEGRASI IOT DAN BIG DATA UNTUK OPTIMASI LOGISTIK DAN RANTAI PASOKAN. JRIS: Jurnal Rekayasa Informasi Swadharma, 4(2), 91–99.
Usanto, U. (2022). Big Data Implementation and Use for Business. Devotion: Journal of Research and Community Service, 3(14), 2845–2851.
Usanto, U., Sucahyo, N., Warta, W., Khie, S., & Fitriyani, I. F. (2023). Transformasi Kepemimpinan Yang Bersifat Profetik Dan Pemberdayaan Masyarakat Di Era Society 5.0 Yang Berkelanjutan. Community Development Journal: Jurnal Pengabdian Masyarakat, 4(2), 5287–5301.
Wibowo, G. W. N., & Kraugusteeliana, K. (2024). Exploratory Data Analysis: Visualization of Average Wages of Workers in Indonesia by Region of Residence using Google Data Studio. TECHNOVATE: Journal of Information Technology and Strategic Innovation Management, 1(3), 110–116. https://doi.org/https://doi.org/10.52432/technovate.1.3.2024.10-116
Wiguna, I. K. A. G., Mustafida, A. N., Santika, P. P., Ariantini, M. S., & Sudipa, I. G. I. (2022). Customer Satisfaction Analysis of PLN Mobile Services Using the Naïve Bayes Classifier Method. INFOKUM, 10(5), 52–58. https://doi.org/10.58471/infokum.v14i01
Wiratama, I. K., Welda, W., Permana, I. P. H., Aristana, M. D. W., & Sudipa, I. G. I. (2022). RECOMMENDATION FOR HIGH SCHOOL DETERMINATION BASED ON ACADEMIC POTENTIAL USING NAÃ VE BAYES METHOD. JIKO (Jurnal Informatika Dan Komputer), 5(2), 108–117. https://doi.org/10.33387/jiko.v5i2.4668